БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ИНСПЕКЦИЯ НАРОДНЫХ УЧИЛИЩ, учреждена в 1869.
ИЮНЬСКИЙ КРИЗИС 1917, второй (после Апрельского кризиса 1917).
ГОММОЗ [от франц. gomme - камедь (от лат. gummi, cummi, греч. kommi)].
КАРАИБСКОЕ МОРЕ (Caribbean Sea), см. Карибское море.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
КОЛОТЫЙ ЛЕСОМАТЕРИАЛ, заготовки из древесины.
ДЕВЕНТЕР (Deventer), город в Нидерландах.
ДЕКЛАРАЦИЯ ПРАВ ЧЕЛОВЕКА ООН Всеобщая.
ДЕВТАШЛАРЫ (от перс.-тур. dev -злой дух и тур. ta$lar - камни).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

н на ген". По этой теории, вс гены резистентного растения (R-гены рано или поздно должны быть преодс лены генами вирулентности паразита т. к. темп его размножения намного выше чем у растения. Тем не менее в природ всегда можно найти растения, устойчивы ко всем известным расам паразитов. Одн из важнейших причин этой стойкост; растений - наличие у них т. н. полево устойчивости (типы устойчивости, npи к-рых паразит может развиваться, н вследствие недостатка пищи в растении из-за наличия механич. преград, небла гоприятного строения устьиц и т. п развивается медленно, и потери урожая в связи с этим невелики). Полевая устойчивость контролируется полимерными генами, каждый изк-рых не даёт видимо го эффекта устойчивости, но их различные сочетания определяют ту или иную eё степень.

Единой теории И. р. нет вследствие большого разнообразия типов возбудителей болезней и защитных реакций растений. Н. И. Вавилов подразделял И. р на структурный (механический) и химический. Механич. И. р. обусловлен морфологич. особенностями растения-хозяина, в частности наличием защитных приспособлений (напр., густое опушение побегов я т. д.), к-рые препятствуют проникновению патогенов в тело растений Хим. И. р. обусловлен мн. хим. особенностями растений. Иногда И. р. зависит от недостатка в растении к.-л. необходи- мого для паразита вещества, в др. случаях растение вырабатывает вещества, вредные для паразита (фитоалексины нем. биолога К.Мюллера; фитонциды сов. биолога Б. П. Токина). Сов. микробиолог Т. Д. Страхов наблюдал, что в тканях устойчивых к болезням растений происходят регрессивные изменения патогенных микроорганизмов, связанные с действием ферментов растения, его обменными реакциями. Сов. биохимики Б. А. Рубин и др. связывают реакции растений, направленные на инактивацию возбудителя болезни и его токсинов, с деятельностью окислительных систем и энергетич. обменом клетки. Различные ферменты растений, регулирующие энергообмен, характеризуются разной степенью устойчивости к продуктам жизнедеятельности патогенных микроорганизмов. У иммунных форм растений доля участия ферментов, устойчивых к метаболитам патогенов, более значительна, чем у неиммунных. Наиболее устойчивы к влиянию метаболитов окислит, системы (пероксидазы и полифенолоксидазы), а также ряд флавиновых ферментов. В инфицированных клетках иммунныхрастений активность этих ферментов не только не падает, но даже возрастает. Это активирование обусловлено биосинтезом ферментных белков, как идентичных присутствующим в незаражённых тканях, так и отличающихся от них по ряду свойств (т. н. изоферментов). У растений, как и у беспозвоночных животных, не доказана способность вырабатывать антитела в ответ на антигены. Только у позвоночных имеются специальные органы, клетки к-рых вырабатывают антитела (см. Иммунитет, Иммунология). В инфицированных тканях у иммунных растений образуются полноценные в функциональном отношении органоиды протоплазмы - митохондрии, пластиды, рибосомы, к-рые обусловливают присущую иммунным формам растений способность не только сохранять, но и повышать при инфекции энергетич. эффективность дыхания. Вызываемые болезнетворными агентами нарушения дыхания сопровождаются образованием различных соединений, выполняющих, в частности, роль своеобразных химич. барьеров, препятствующих распространению инфекции. Следовательно, И. р. - выражение особенностей протопласта, клетки, ткани, органа и организма в целом, представляющего сложную, разно-качественную и в то же время функционально единую биол. систему. Характер ответных реакций растений на повреждения вредителями, паразитами - образование хим., механич. и ростовых барьеров, способность к регенерации повреждённых тканей, замена утраченных органов - всё это играет важную роль в И. р. к вредителям и паразитам. Вместе с тем в ряде случаев существенное значение для проявления И. р. имеют содержание в тканях нек-рых хим. соединений, анатомич. особенности растений и т. д. В большой степени это относится к явлениям И. р. к вредителям-насекомым. Так, ряд продуктов т. н. вторичного обмена растений (алкалоиды, гликозиды, терпены, сапонины и др.) оказывает токсич. действие на пищеварительный аппарат, эндокринную и нейрогумораль-ную системы насекомых и др. вредителей растений.

В селекции растений на устойчивость к заболеваниям и вредителям наибольшее значение имеет гибридизация (внут-рисортовая, межвидовая и даже межродовая). Исходным материалом для селекции служат авто- и амфиполиплоиды, на основе к-рых получают гибриды между разнохромосомными видами. Такие амфи-Ъиплоиды созданы, напр., сов. селекционером М. Ф. Терновским при получении сортов табака, устойчивых к мучнистой росе. Для создания устойчивых сортов можно использовать искусств, мутагенез, а у перекрёстноопыляемых растений - отбор среди гетерозиготных популяций. Таким способом сов. селекционеры Л. А. Жданов и В. С. Пустовойт получили сорта подсолнечника, устойчивые к заразихе. Для длительного сохранения устойчивости сортов предложено: 1) создание многолинейных сортов путём скрещивания хоз. ценных сортов с сортами, несущими разные гены устойчивости. При этом вследствие разнообразия генов устойчивости у полученных гибридов новые расы паразитов не могут накопиться в достаточном количестве; 2) сочетание в одном сорте R-генов с генами полевой устойчивости. Повышению устойчивости способствует также перио-дич. смена сортового состава в том или ином р-не или х-ве.

Лит.: Дунин М. С., Иммуногенез и его практическое использование. Рига, 1946; Гоиман Э., Инфекционные болезни растений, пер. с нем., М., 1954; Стэкмен Э., Xаррар Д., Основы патологии растений, пер. с англ., М., 1959; Горленко М. В., Краткий курс иммунитета растений к инфекционным болезням, 2 изд., М., 1962; Вавилов Н. И., Избр. труды, т. 4, М.- Л., 1964; Гешеле Э. Э., Основы фитопатологической оценки в селекции, М., 1964; Вердеревский Д. Д., Иммунитет растений к инфекционным болезням, Кишинев, 1968; Метлицкий Л. В., Озерецковская О. Л., Фитоиммуни-тет, М., 1968; Р у б ин Б. А., Арциховская Е. В., Биохимия и физиология иммунитета растений, 2 изд., М., 1968; Ж у-ковский П. М., Культурные растения и их сородичи, 3 изд., Л., 1971.

М. В. Горленко. Б. А. Рубин.

ИММУНОГЕНЕТИКА, комплексная научная дисциплина, сочетающая методы иммунологии, молекулярной биологии и генетики для изучения наследственных факторов иммунитета, внутривидового разнообразия и наследования тканевых антигенов, генетических и популяцион-ных аспектов взаимоотношений макро-и микроорганизма и тканевой несовместимости. Начало И. положили работы нем. учёных П. Эрлиха и Ю. Моргенрота, обнаруживших в нач. 20 в. группы крови у коз, и открытие К. Ландштейнером групп крови у человека. Термин "И." предложен амер. учёным М. Ирвином в 1930.

Индивидуальная и видовая устойчивость растений и животных к бактериальным и вирусным инфекциям обеспечивается сложной многоступенчатой системой защитных сил организма. В борьбе между защитными силами и инфекционными агентами "преимущество" часто остаётся на стороне последних, т. к. микроорганизмы быстро размножаются, образуя многомиллионные популяции, в к-рых рано или поздно возникают мутантные формы с более агрессивными свойствами, чем у исходного штамма. Вероятно, как ответное защитное средство на определённом этапе эволюции позвоночных животных возникла система адаптивного иммунитета (антителообразование) - наиболее мощная линия обороны организма, особенно при повторных контактах с инфекционными агентами. Способность (или неспособность) вырабатывать антитела - наследственный признак. Генетич. регуляция биосинтеза антител имеет характерные особенности. Так, образование одной полипептидной цепи молекулы антитела контролируется двумя разными генами. Один из них контролирует образование части цепи, участвующей в построении активного центра; строение этой части различно у антител разной специфичности. Другой ген контролирует образование части цепи, строение к-рой одинаково у антител, относящихся к данному классу иммуноглобулинов.

Помимо групповых антигенов, существуют наследуемые их варианты, специфичные для отдельных типов клеток, напр, для лейкоцитов. Различия в строении лейкоцитарных антигенов у донора и реципиента - одна из причин несовместимости при пересадке органов и тканей. Наследственные внутривидовые различия в строении мн. белков сыворотки крови (альбумины, трансферрины и др.) контролируются, как правило, аллельными генами, причём частота каждой аллели в популяции высока (20% и выше), что указывает на "давление" естественного отбора. Одна из важнейших задач И. - установление факторов, обусловливающих распространение в популяциях новых аллелей. Таким фактором может служить сходство в строении антигенов у болезнетворных микроорганизмов и макроорганизма. Животные в норме не вырабатывают антител к собственным антигенам, поэтому сходство в антигенном строении между к.-л. компонентом микробной клетки и той или иной молекулой макроорганизма приведёт к тому, что последний не сможет синтезировать антитела, обезвреживающие данный вид микроба. В связи с этим снижаются защитные силы макроорганизма. Поэтому отбор будет подхватывать появление видоизменённых молекул белков (или полисахаридов), повышая тем самым иммунную устойчивость организма. Распространение в популяции новых аллелей может происходить также и в тех случаях, когда в результате мутации соответствующего гена молекула макроорганизма изменяется так, что ферментативные системы микроба уже не могут её использовать в качестве субстрата. Иногда для этого достаточно замены одной аминокислоты в полипептидной цепи, как это имеет место у нек-рых мутантных форм гемоглобина. Такие формы распространились в районах земного шара, где высока заболеваемость малярией: носители мутантного гемоглобина не болеют малярией, т. к. малярийный плазмодий неспособен использовать его в качестве субстрата. В ряде случаев распространяются мутации, к-рые изменяют биохимию клетки или органа в целом и тем самым нарушают приспособленность паразита. По-видимому, существуют и др. механизмы наследственного иммунитета, благодаря к-рым достигается наследственная гетерогенность вида-хозяина, препятствующая распространению пара-зитич. штамма микроорганизма.

Т. о., степень естеств. устойчивости к заболеванию животных данного вида определяется мн. факторами, суммарно отражая особенности конституции и животного, и возбудителя заболевания. Трёхмерная модель этих взаимоотношений представлена на рис., где показано, что процент особей, выживших после инфекции, зависит как от наследств, устойчивости организма к возбудителю заболевания, так и от вирулентности последнего.

Трёхмерное изображение зависимости жизнеспособности макроорганизма от его устойчивости к патогенным агентам и от вирулентности возбудителя.

Наследств, устойчивость к заболеваниям, как правило, специфична, т. к. физиологич. основы устойчивости к разным заболеваниям обычно неодинаковы.

Так, африканский скот зебу, прекрасно переносящий жару и устойчивый к туберкулёзу очень чувствителен к трипаносомозу; линия белых леггорнов, устойчивая к моноцитозу кур, чувствительна к куриному лейкозу; линии мышей, устойчивые к мышиному тифу, чрезвычайно восприимчивы к вирусу ложного бешенства. С древнейших времён генетич. устойчивость отд. особей, пород, рас и т. д. к заболеваниям служила предпосылкой для селекции. Так были выведены овцы породы ромни-марш, устойчивые к трихо-стронгилидам, раса кроликов, устойчивая к миксоматозу, и медоносные пчёлы, устойчивые к амер. гнильцу. Естественный отбор на устойчивость существовал и среди людей. Так, после открытия Нового Света оказалось, что индейцы Сев. Америки более чувствительны к кори и ветряной оспе, чем европейцы, для к-рых эти заболевания были привычны и легко переносимы.

В основе генетич. устойчивости к заболеваниям лежат разнообразные механизмы, в т. ч. и неиммунологические. Белые леггорны, напр., устойчивы к белому поносу потому, что имеют более совершенную терморегуляцию; устойчивость скота зебу к клещевым заболеваниям обусловлена более толстой кожей и особенностями кожных выделений, к-рые отпугивают клещей. Чувствительность к оспе у лиц с группами крови А и АВ связана с общностью антигена А человека и антигенов вируса оспы. Поэтому лица с группами крови В и О(Н) легче переносят оспу.

Перенесение генетич. представлений в область иммунологии позволило сов. учёному В. П. Эфроимсону сформулировать эволюционно-генетич. концепцию иммуногенеза, объясняющую внутривидовое антигенное разнообразие и гетерогенность антител по специфичности. Каждая здоровая зрелая в иммунологич. отношении особь способна к иммунному ответу на тканевые антигены особи с др. генотипом. Т. о., тканевая несовместимость - универсальная биологич. закономерность. Лишь однояйцевые близнецы и животные одной чистой линии не разделены барьером тканевой несовместимости, выраженность к-рой зависит от степени несходства генотипов донора и реципиента. Для успешных пересадок органов и тканей, переливаний крови и клеток костного мозга очень важно снизить до минимума величину этого несходства путём подбора совместимого донора. Изучение клеточных антигенов, их наследования и разнообразия, их обнаружение (типирование) - это те разделы И., к-рые особенно важны для трансплантологии, трансфузиологии, иммуногематологии и клинич. иммунологии. См. также Иммунология.

Лит.: Медведев Н. Н., Линейные мыши, Л., 1964; Xатт Ф., Генетика животных, пер. с англ., М., 1969; Эфроимсон В. П., Иммуногенетика, М., 1971; Hildemann W. Н., Immunogenetics, San Francisco, 1970.

А. Н. Мац, О. В. Рохлин.

ИММУНОГЛОБУЛИНЫ (Ig), глобулярные белки, содержащиеся в сыворотке крови позвоночных животных и человека. И. образуют группу близких по хим. природе соединений, в состав к-рых входят также углеводы. По-видимому, все И. являются антителами к к.-л. антигенам. Известно 5 классов И. человека: G, М, A, D, Е (см. табл.). Наиболее полно изучены И. класса G (IgG). Их молекулы построены из двух идентичных легких (мол. масса 22 000) и двух идентичных тяжёлых (мол. масса 55 000-70 000) по-липептидных цепей, скреплённых ди-сульфидными связями (см. рис.). При расщеплении протеолитич. ферментами (напр., папаином) молекула И. распадается на три части: два одинаковых фрагмента (обозначаются Fab), каждый из к-рых сохраняет способность к связыванию с антигеном, и фрагмент (обозначается Fc), способствующий прохождению И. через биологические мембраны. Все три фрагмента соединены короткими гибкими участками, расположенными в середине тяжёлой цепи. Гибкость позволяет молекулам И. оптимально присоединяться к антигенам, имеющим разное пространственное строение. Участки молекулы, ответственные за связывание с антигеном (активный центр), образованы N-концевыми (несут на конце аминогруппу - NH2) отрезками тяжёлых и лёгких цепей. Последовательность аминокислот в этих отрезках специфична для каждого IgG, в др. участках цепей она почти не варьирует. На основании различий в строении тяжёлых цепей И-относят к определённым классам.

Схема молекулы иммуноглобулина G. Показаны две тяжёлые и две лёгкие полипептидные цепи, соединённые меж-цепьевыми дисульфидными связями. Лёгкая цепь состоит из 2, тяжёлая - из 4 структурных единиц (петель), образованных внутрицепьевыми дисульфидными связями. Жирными линиями обозначены N-концевые участки цепей, стрелкой - участок, чувствительный к протеолити-ческому расщеплению, в результате к-рого молекула распадается на два Fab-фрагмента, сохраняющих активность антител, и на Fc-фрагмент.

Особенности разных классов иммуноглобулинов здорового человека
Класс иммуногло-

булина


Мол. масса


Содержание углеводов,

%


Содержание в сыворотке,

мг %










IgG


140 000


2


800-1680
IgM


900 000


10


50-190
IgA


170 000


7


140-420



и выше






IgD


180 000


12


3-40
IgE


196 000


10


0,01-0,14



Большинство антител находится гл. обр. среди IgG (применяемые в лечебных целях препараты гамма-глобулинов состоят преим. из IgG). IgM эволюционно наиболее древние И.; они синтезируются на первых стадиях иммунной реакции. Их молекулы состоят из 5 мономерных субъединиц, каждая из к-рых напоминает молекулу IgG. Для IgA характерна способность проникать в различные секреты (слюну, молозиво, кишечный сок), где они встречаются в полимерной форме. Антитела, участвующие в аллергич. реакциях (см. Аллергия), относятся к недавно открытым IgE.

И. синтезируются лимфатич. клетками. При нек-рых поражениях этих клеток в крови и моче накапливается большое кол-во т. н. миеломных И., к-рые, в отличие от И. здорового организма, однородны по составу. См. также Иммунология и Иммуногенетика.

Лит.: Гауровиц Ф., Иммунохимия и биосинтез антител, пер. с англ., М., 1969; Незлин Р. С., Биохимия антител, М., 1966; Портер Р., Структура антител, в сб.: Молекулы и клетки, в. 4, пер. с англ., М., 1969; Rabat Е. A., Structuralconcepts in immunology and immunochemistry, N. Y., 1968. P. С. Незлин.

ИММУНОДИАГНОСТИКА (от иммунитет и диагностика), раздел прак-тич. иммунологии,задача к-рого - распознавание инфекционных болезней при помощи серологических реакций (бактериолиза, агглютинации, преципитации и др.), а также аллергических диагностических проб. Серологич. реакциями пользуются также при определении групп крови и в судебной медицине для выяснения принадлежности крови человеку или тому или иному виду животных.

И. используется в вет. практике для распознавания мн. инфекционных болезней животных, а также выявления больных животных и микробоносителей. Для диагностики туберкулёза, бруцеллёза, сапа И. осуществляется систематически, в плановом порядке.

ИММУНОЛОГИЯ (от иммунитет и ...логия), наука о защитных реакциях организма, направленных на сохранение его структурной и функциональной целостности и биологическ