| да обычно под камнями на россыпях. В году одна кладка. Пища - семена, реже насекомые.
ГОРНЫЕ ИНДЕЙКИ, род птиц сем. фазановых; то же, что улары.
ГОРНЫЕ ИНСТИТУТЫ, вузы, готовящие инженеров для работы в горнодобывающих отраслях пром-сти - угольной, торфяной, добычи руд чёрных, цветных и редких металлов, хим. сырья и строит. материалов, нефтяной и газовой.
В 1971 в СССР функционировали Днепропетровский горный институт имени Артёма, Ленинградский горный институт имени Г. В. Плеханова, Московский горный институт, Свердловский горный ин-т имени В. В. Вахрушева (1916), Криворожский горнорудный ин-т (1922). Во всех Г. и. есть дневные, вечерние (кроме Криворожского) и заочные ф-ты (отделения), аспирантура. Срок обучения в Г. и. 5 лет-5 лет 6 мес. Выпускники защищают дипломные проекты и получают квалификацию горного инженера (технолога, маркшейдера, строителя, физика, механика, электрика, экономиста - в зависимости от полученной специальности).
Днепропетровский, Ленинградский, Московский и Свердловский Г. и. имеют право принимать к защите кандидатские я докторские диссертации, а Криворожский - кандидатские. См. также ст. Горное образование.
ГОРНЫЕ КЕНГУРУ (Petrogale), род млекопитающих сем. кенгуровых. Дл. тела 50-80 см, дл. хвоста 40-70 см, взрослые животные весят от 3 до 9 кг. Г. к. окрашены в песчаные тона: осн. цвет верха - серовато-коричневый, низа - бледно-жёлтый или белый, концы лап, морды и хвоста темнее. 2 вида: P. peni-cillata и P. xanthopus, отличающиеся по окраске. Встречаются по всей Австралии и на мелких прилежащих островах. Живут в горах и каменистых пустынях. Быстро бегают, хорошо прыгают (до 4 м в длину), ловко взбираются по скалам. Питаются растит. пищей. В засушливый период долгое время могут обходиться без воды (довольствуясь влагой, поступающей с пищей). Размножаются раз в год. Численность невелика.
ГОРНЫЕ КЛИМАТЫ, климатич. условия в горных местностях. Гл. причиной климатич. отличий гор от соседних равнин является увеличение высоты над уровнем моря. Кроме того, важные особенности Г. к. создаются рельефом местности (степенью расчленения, относительной высотой и направлением горных хребтов, экспозицией склонов, шириной и ориентировкой долин и др.), а также ледниками и фирновыми полями.
Можно различать собственно горный климат на высотах менее 3000-4000 м и высокогорный климат на более высоких уровнях. Горный климат существенно отличается от климатич. условий в свободной атмосфере над равниной на тех же высотах; климатич. условия на обширных высоких плато также отличаются от условий в долинах, на горных склонах или на отд. пиках. Вследствие того что атм. давление, темп-pa и влажность воздуха и др. его свойства меняются с высотой очень сильно, в горах наблюдаются лежащие один над другим климатич. пояса. Это влечёт за собой и высотную поясность ландшафтов в целом.
С высотой атмосферное давление и плотность воздуха убывают; ещё быстрее уменьшается содержание водяного пара и пыли. Это увеличивает прозрачность воздуха для солнечной радиации в горных местностях. Интенсивность прямой солнечной радиации в горах по сравнению с равнинами повышается (а рассеянной радиации, наоборот, понижается). Вследствие этого освещённость увеличивается, особенно на снежных полях, а небо получает более густую синюю окраску. Эффективное излучение земной поверхности в горах также возрастает.
Темп-pa воздуха в тропосфере падает с высотой. В горах она также зависит от высоты местности и ниже, чем на низменностях. Кроме того, она зависит и от экспозиции склонов: на южных склонах, где приток радиации больше, темп-ра выше, чем на северных. Горные хребты, особенно расположенные в широтном направлении, являются поэтому важными климатическими границами (Гималаи, Кавказ). На больших высотах в горах на температурный режим влияет также наличие ледников и фирновых полей.
Во внутр. частях горных массивов ночью и зимой может происходить застой выхоложенного воздуха, что приводит к частому образованию в горах температурных инверсий (повышений темп-ры с высотой). Суточный ход темп-ры воздуха на отд. вершинах уменьшен, приближаясь к условиям в свободной атмосфере; но в долинах и на плато он может быть весьма значительным (напр., в Тибете и на Памире). Годовой ход темп-ры соответствует условиям на равнине в данной широтной зоне. Его амплитуда велика в средних и высоких, но мала в низких широтах.
Осадки в горах увеличиваются с высотой, однако лишь до нек-рого уровня, в разных случаях различного. Это увеличение меняется в зависимости от экспозиции склонов. Наибольшие осадки наблюдаются на склонах, обращённых к преобладающим ветрам, особенно если воздушные массы, переносимые последними, обладают большим влагосодержанием (напр.,на западе Тянь-Шаня и Памира). На подветренных склонах, наоборот, наблюдаются фёны, а также бора. В горах создаются местные циркуляции воздуха, т. н. горно-долинные ветры; над ледниками - также ледниковые ветры.
Г. к. во многих случаях обладают благотворным физиологич. действием (горные курорты). Особое значение имеют умеренная разрежённость и чистота горного воздуха, увеличенная солнечная, в т. ч. ультрафиолетовая, радиация, прохлада. Наряду с этим фёны, увеличение осадков и др. особенности Г. к. могут иметь и отрицат. значение для организма человека. Выше 3000 м обычно начинаются проявления высотной болезни; интенсивность солнечной радиации здесь слишком велика, темп-pa и давление воздуха низки, а осадки малы. Поэтому жизнь в условиях высокогорного климата часто требует длит. акклиматизации. Интересно, однако, отметить, что многие города Боливии и Перу расположены на выс. до 3800 м. Поселения и земледелие распространяются в горах до выс. 4000- 5000 м.
Лит.: Берг Л. С., Основы климатологии, 2 изд., М.. 1938. С. П. Хромов.
ГОРНЫЕ КОНГРЕССЫ международные, проводятся с 1958. Первый конгресс организован по инициативе Гос. горного совета Польской Народной
Горные конгрессы международные
Конгресс
Место проведения
Дата проведения
Тема (девиз)
Число стран-участниц
Число участников
Число докладов
1-й
Польша, Варшава
сентябрь 1958
Строительство шахт и карьеров
15
700
72
2-й
Чехословакия , Прага
май 1961
Рентабельность работы горных предприятий
17
700
50
3-й
Австрия , Зальцбург
сентябрь 1963
Наука и техника в борьбе за безопасность труда
22
900
43
4-й
Великобритания, Лондон
июль 1965
Системы разработок угольных и рудных месторождений, проектирование горнодобывающих предприятий, планирование горных работ
42
1500
42
5-й
СССР,
Москва
июль 1967
Технич. прогресс в горной пром-сти
44
1800
55
6-й
Испания, Мадрид
июнь 1970
Наука на службе горного дела
48
1600
88
Республики и Комитета по углю Европ. комиссии ООН. К 1970 состоялось 6 Г. к. (см. табл.). Место проведения очередного Г. к. определяется Междунар. оргкомитетом. Начиная с 4-го при Г. к. организуются Междунар. выставки горного оборудования. Наиболее представительной была выставка при 5-м Г. к. ("Интергормаш-67").
7-й Г. к. решено провести в 1972 в Румынии под девизом "Экономика, оптимизация и организация горного производства", 8-й - в 1974 в Перу под девизом "Перспективы и прогнозирование развития горной промышленности".
Б. Е. Казаков.
ГОРНЫЕ ПОЛЁВКИ (Alticola), род млекопитающих сем. хомякообразных отр. грызунов. Дл. тела от 80 до 140 мм, весят 37-49 г. Цвет шерсти сверху от серебристо-серого до коричневого и красноватого, снизу - белый или палевобелый. У северных форм (горная сибирская полёвка) хорошо выражена сезонная смена окраски меха. 5 видов. Распространены в горных районах Центр. и Сев.-Вост. Азии. В СССР - 3 вида: высокогорная сибирская полёвка (А. mасrotis), горная серебристая полёвка (A. roylei) и плоскочерепная полёвка (A. strelzovi). Г. п. придерживаются каменистых участков на высоте от 500 до 6000 м. Могут быть активны круглые сутки. Живут в одиночку в пустотах и щелях среди скал и камней; только плоскочерепная полёвка образует небольшие колонии. Размножаются 1 - 3 раза в год, в помёте 5-11 детёнышей. Нек-рые являются носителями возбудителей трансмиссивных заболеваний, в т. ч. чумы.
Лит.: Огнев С. И., Звери СССР и прилежащих стран, т. 7, М.-Л., 1950; Млекопитающие фауны СССР, ч. 1. М.-Л., 1963. О. Л. Россолимо.
ГОРНЫЕ ПОРОДЫ, природные агрегаты минералов более или менее постоянного состава, образующие самостоятельные геологические тела, слагающие земную кору. Термин "Г. п." впервые в современном смысле употребил (1798) рус. минералог и химик В. М. Севергин.
Г. п. представляют собой механич. сочетания разных по составу минералов, в т. ч. и жидких. Процентное содержание минералов в Г. п. определяет её минеральный состав. Форма, размеры, взаимное расположение и ориентация минеральных зёрен или частиц Г. п. обусловливают её структуру и текстуру.
По происхождению Г. п. делятся на три группы: магматические (изверженные), осадочные и метаморфические. Магматич. и метаморфич. Г. п. слагают ок. 90% объёма земной коры, остальные 10% приходятся на долю осадочных пород, однако последние занимают 75% площади земной поверхности.
Магматические горные породы образуются в результате застывания магмы. В глубоких частях земной коры магма охлаждается медленно, хорошо раскристаллизовывается и из неё формируются кристаллич. зернистые породы, наз. интрузивными (граниты, сиениты, диориты и др.). Эти породы залегают в земной коре в виде батолитов, штоков, лакколитов и др. тел. Магма, излившаяся на земную поверхность в виде лавы вулканов, остывает быстро (часть её может не раскристаллизоваться, а затвердеть в виде вулканич. стекла), образуя эффузивные, или излившиеся, Г. п. (базальты, андезиты, липариты и др.), а также вулканич. туфы, представляющие собой сцементированные твёрдые продукты вулканич. извержений (пепел, лапилли, вулканич. бомбы и др.). Эффузивные породы часто залегают в виде лавовых потоков и покровов. Гл. породообразующими минералами магматич. Г. п. являются алюмосиликаты и силикаты (полевые шпаты, кварц, слюда и др.).
Осадочные горные породы образуются на земной поверхности и вблизи неё в условиях относительно низких темп-р и давлений в результате преобразования морских и континентальных осадков. По способу своего образования осадочные породы подразделяются на три осн. гене-тич. группы: обломочные породы (брекчии, конгломераты, пески, алевриты) - грубые продукты преим. механич. разрушения материнских пород, обычно наследующие наиболее устойчивые минеральные ассоциации последних; глинистые породы - дисперсные продукты глубокого химич. преобразования силикатных и алюмосиликатных минералов материнских пород, перешедшие в новые минеральные виды; хемогенные, биохемогенные и органогенные породы - продукты непосредственного осаждения из растворов (напр., соли), при участии организмов (напр., кремнистые породы), накопления органич. вещества (напр., угли) или продукты жизнедеятельности организмов (напр., органогенные известняки). Промежуточное положение между осадочными и вулканич. породами занимает группа эффузивно-осадочных пород. Между осн. группами осадочных пород наблюдаются взаимные переходы, возникающие в результате смешения материала разного генезиса. Характерной особенностью осадочных Г. п., связанной с условиями образования, является их слоистость и залегание в виде более или менее правильных пластов.
Метаморфические горные породы образуются в толще земной коры в результате изменения (метаморфизма) осадочных или магматич. Г. п. Факторами, вызывающими эти изменения, могут быть: близость застывающего магматич. тела и связанное с этим прогревание метамор-физуемой породы, а также воздействие отходящих от этого тела активных хим. соединений, в первую очередь различных водных растворов (контактный метаморфизм), или погружение породы в толщу земной коры, где на неё действуют факторы регионального метаморфизма - высокие темп-ры и давления. Для регионально метаморфизованных Г. п. характерны сланцеватость, наличие ряда спе-цифич. минералов (кордиерит, андалузит, кианит и др.), а также структуры, иногда сохраняющие следы структур исходных пород (т. н. реликтовые структуры). Типичными метаморфич. Г. п. являются разные по составу кристаллич. сланцы, контактовые роговики, скарны, гнейсы, амфиболиты, мигматиты и др. Различие в происхождении и, как следствие этого, в минеральном составе Г. п. резко сказывается на их химич. составе и физич. свойствах.
Химич. состав магматич. Г. п., сложенных гл. обр. силикатными минералами, характеризуется большим богатством кремнёвой кислоты. По содержанию SiO2 магматич. Г. п. делятся на кислые (св. 65%), средние (55-65%) и основные (менее 55%). Кроме того, выделяются более редкие, очень богатые SiO2, ультракислые породы (некоторые апли-ты) и ультраосновные, содержащие менее 45% SiO2 и очень много окиси магния. Породы, богатые щелочными металлами, выделяют под назв. щелочных. Породы, различающиеся по содержанию главных элементов, отличаются и по содержанию элементов-примесей. Так, к кислым породам приурочены повышенные концентрации Be, W, Sn, Pb, Zn, Cu, Au и др., а к основным-Ni, Cr, Pt. К щелочным породам часто приурочены большие концентрации фосфора. Помимо общей распространённости различных элементов, наблюдается специфич. приуроченность отдельных элементов и рудных месторождений к породам к.-л. региона (т. н. металлогенич. специфика интрузивов). Химич. состав осадочных Г. п. отличается от пород магматических гораздо большей дифференцированностью, широким диапазоном колебаний в содержании породообразующих компонентов [напр., SiO2 изменяется от 0 (соли) до 100% (чистые кварцевые пески), СаО - от долей процента (чистые каолиновые глины) до 56% (известняки) и т. п.], повышенным содержанием воды, углекислоты, органического углерода, "избыточных летучих" (S, C1, В и др.), а также высокими отношениями окисного железа к закис-ному. Метаморфич. Г. п. по составу близки к материнским осадочным или магматич., хотя в них, в процессе перекристаллизации или метасоматоза, могут концентрироваться мн. рудные элементы, создавая рудные месторождения.
Как физическое тело Г. п. характеризуется группой базисных свойств, в к-рую входят плотностные, упругие, прочностные, тепловые, электрич. и магнитные свойства. Ниже приведены наиболее вероятные пределы изменения базисных свойств Г. п.:
Пористость - до 60%
Плотность - 800-8000 кг/м3
Модуль Юнга - 10-200 Гн/м2
Коэфф. Пуассона - 0,07 - 0,38
Предел прочности на сжатие - до 500 Мн/м2
Предел прочности на растяжение - до 20 Мн/м2
Удельная теплопроводность - 0,1 - 10 вт/(м*К)
Коэфф. линейного расширения - 1*10-6-9*10-5 1/°С
Удельное электрич. сопротивление - 10-3-1014 ом*м
Относит. диэлектрич. проницаемость - 2-30
Относит. магнитная проницаемость - 0,9998-4
Свойства Г. п. обусловлены их минеральным составом и строением, а также внешними условиями. Важными параметрами, определяющими свойства Г. п., являются её пористость и трещиноватость. Поры могут быть частично заполнены жидкостью, поэтому свойства Г. п. зависят одновременно от свойств твёрдой, газообразной и жидкой фаз и их взаимного соотношения. Пористость и трещиноватость особенно важны при оценке Г. п. как коллекторов нефти и воды, а также скорости их притекания к источнику, буровой скважине н т. д. Ею же определяются влаго- и газоёмкость Г. п. и их водо-и газопроницаемость. В магматич. Г. п. количество газовых пустот может достигать 60-80% (пемзы и пемзовые туфы). В осадочных Г. п. поры создаются в момент осадкообразования (межзерновые поры) и могут закрываться или сохраняться при цементации. Большое количество пор возникает при накоплении пористых зёрен (раковины радиолярий и диатомовых). Метаморфич. Г. п. обычно бедны порами и имеют только трещины, вызываемые охлаждением Г. п.
С пористостью и минеральным составом тесно связана плотность Г. п., к-рая в породах, лишённых пористости, определяется слагающими их минералами. Рудные минералы имеют высокую плотность (до 5000 кг/м3 у пирита и 7570 кг/м3 у галенита); меньшая плотность характерна для минералов осадочных пород (напр., каменная соль имеет плотность 2100 кг/м3). Плотность Г. п. из-за пористости может сильно отличаться от плотности слагающих её минералов. Так, пемзовые туфы Армении имеют плотность ок. 800-900 кг/м3, граниты, мраморы, плотные известняки и песчаники - ок. 2600 кг/м3. Плотность Г. п. легко рассчитывается по минеральному составу и пористости; возможны и очень полезны обратные расчёты.
Такие свойства Г. п., как теплоёмкость, коэфф. объёмного теплового расширения и др. определяются в первую очередь минеральным составом, прочностные же и упругие свойства Г. п., их теплопроводность и электропроводность зависят гл. обр. от строения пород и особенно сил связей между зёрнами. Так, наличие преимущественной ориентировки зёрен приводит к анизотропии свойств. В создании анизотропии свойств может участвовать также ориентированная трещиноватость.
Свойства Г. п., определённые вдоль и поперёк слоистости или прожилковато-сти, как правило, отличаются друг от друга. При этом модуль Юнга, предел прочности на растяжение, теплопроводность, электрич. проводимость, диэлектрич. и магнитная проницаемости больше вдоль слоистости, а предел прочности на сжатие - поперёк слоистости. У мелкозернистых Г. п. прочностные свойства выше, а у крупнозернистых ниже. Особенно высокие значения предела прочности на сжатие имеют мелкозернистые породы с волокнистым строением (напр., нефрит до 500 Мн/м2). Низкий предел прочности на сжатие имеют |